Extensions 1→N→G→Q→1 with N=C32 and Q=C3×C9

Direct product G=N×Q with N=C32 and Q=C3×C9
dρLabelID
C33×C9243C3^3xC9243,61

Semidirect products G=N:Q with N=C32 and Q=C3×C9
extensionφ:Q→Aut NdρLabelID
C321(C3×C9) = C9×He3φ: C3×C9/C9C3 ⊆ Aut C3281C3^2:1(C3xC9)243,35
C322(C3×C9) = C3×C32⋊C9φ: C3×C9/C32C3 ⊆ Aut C3281C3^2:2(C3xC9)243,32

Non-split extensions G=N.Q with N=C32 and Q=C3×C9
extensionφ:Q→Aut NdρLabelID
C32.1(C3×C9) = He3⋊C9φ: C3×C9/C9C3 ⊆ Aut C3281C3^2.1(C3xC9)243,17
C32.2(C3×C9) = 3- 1+2⋊C9φ: C3×C9/C9C3 ⊆ Aut C3281C3^2.2(C3xC9)243,18
C32.3(C3×C9) = C9.5He3φ: C3×C9/C9C3 ⊆ Aut C32813C3^2.3(C3xC9)243,19
C32.4(C3×C9) = C9.6He3φ: C3×C9/C9C3 ⊆ Aut C32813C3^2.4(C3xC9)243,20
C32.5(C3×C9) = C9×3- 1+2φ: C3×C9/C9C3 ⊆ Aut C3281C3^2.5(C3xC9)243,36
C32.6(C3×C9) = C27○He3φ: C3×C9/C9C3 ⊆ Aut C32813C3^2.6(C3xC9)243,50
C32.7(C3×C9) = C33⋊C9φ: C3×C9/C32C3 ⊆ Aut C3227C3^2.7(C3xC9)243,13
C32.8(C3×C9) = C32.19He3φ: C3×C9/C32C3 ⊆ Aut C3281C3^2.8(C3xC9)243,14
C32.9(C3×C9) = C32.20He3φ: C3×C9/C32C3 ⊆ Aut C3281C3^2.9(C3xC9)243,15
C32.10(C3×C9) = C9.4He3φ: C3×C9/C32C3 ⊆ Aut C32273C3^2.10(C3xC9)243,16
C32.11(C3×C9) = C923C3φ: C3×C9/C32C3 ⊆ Aut C3281C3^2.11(C3xC9)243,34
C32.12(C3×C9) = C3.C92central extension (φ=1)243C3^2.12(C3xC9)243,2
C32.13(C3×C9) = C272C9central extension (φ=1)243C3^2.13(C3xC9)243,11
C32.14(C3×C9) = C32⋊C27central extension (φ=1)81C3^2.14(C3xC9)243,12
C32.15(C3×C9) = C9⋊C27central extension (φ=1)243C3^2.15(C3xC9)243,21
C32.16(C3×C9) = C3×C9⋊C9central extension (φ=1)243C3^2.16(C3xC9)243,33
C32.17(C3×C9) = C3×C27⋊C3central extension (φ=1)81C3^2.17(C3xC9)243,49

׿
×
𝔽